Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 11, 2026
-
In recent years, there has been a trend to adopt human-robot collaboration (HRC) in the industry. In previous studies, computer vision-aided human pose reconstruction is applied to find the optimal position of point of operation in HRC that can reduce workers’ musculoskeletal disorder (MSD) risks due to awkward working postures. However, the reconstruction of human pose through computer-vision may fail due to the complexity of the workplace environment. In this study, we propose a data-driven method for optimizing the position of point of operation during HRC. A conditional variational auto-encoder (cVAE) model-based approach is adopted, which includes three steps. First, a cVAE model was trained using an open-access multimodal human posture dataset. After training, this model can output a simulated worker posture of which the hand position can reach a given position of point of operation. Next, an awkward posture score is calculated to evaluate MSD risks associated with the generated postures with a variety of positions of point of operation. The position of point of operation that is associated with a minimum awkward posture score is then selected for an HRC task. An experiment was conducted to validate the effectiveness of this method. According to the findings, the proposed method produced a point of operation position that was similar to the one chosen by participants through subjective selection, with an average difference of 4.5 cm.more » « less
-
Work-related musculoskeletal disorders (MSDs) are often observed in human-robot collaboration (HRC), a common work configuration in modern factories. In this study, we aim to reduce the risk of MSDs in HRC scenarios by developing a novel model-free reinforcement learning (RL) method to improve workers’ postures. Our approach follows two steps: first, we adopt a 3D human skeleton reconstruction method to calculate workers’ Rapid Upper Limb Assessment (RULA) scores; next, we devise an online gradient-based RL algorithm to dynamically improve the RULA score. Compared with previous model-based studies, the key appeals of the proposed RL algorithm are two-fold: (i) the model-free structure allows it to “learn” the optimal worker postures without need any specific biomechanical models of tasks or workers, and (ii) the data-driven nature makes it accustomed to arbitrary users by providing personalized work configurations. Results of our experiments confirm that the proposed method can significantly improve the workers’ postures.more » « less
-
Human-robot collaboration (HRC) is an emerging research area that has gained tremendous attention from both academia and industry. Since some robot-related factors can elicit mental stress or have negative psychological effects on human workers, it is essential to understand these factors and maintain workers’ mental stress at a low level. Galvanic Skin Response (GSR) measures skin conductance and is known to be a physiological measurement that reflects short-term mental stress. Typically, skin conductance increases in response to greater mental stress. In this study, the mental stress caused by the hand-over activities of a collaborative robot was investigated using both GSR as an objective measurement and NASA-Task Load Index (TLX) as a subjective assessment. Several robot-related factors that may lead to mental stress were experimentally examined. GSR outcomes indicated that end effector approaching within workers’ view, low end effector speed, and constrained end effector trajectory led to a significantly lower skin conductance. Some aspects of the NASA-TLX also indicated that speed and trajectory significantly affected the scores. Yet, no significant differences were found between approaching directions regarding NASA-TLX scores.more » « less
-
Excessive low back joint loading during material handling tasks is considered a critical risk factor of musculoskeletal disorders (MSD). Therefore, it is necessary to understand the low-back joint loading during manual material handling to prevent low-back injuries. Recently, computer vision-based pose reconstruction methods have shown the potential in human kinematics and kinetics analysis. This study performed L5/S1 joint moment estimation by combining VideoPose3D, an open-source pose reconstruction library, and a biomechanical model. Twelve participants lifting a 10 kg plastic crate from the floor to a knuckle-height shelf were captured by a camera and a laboratory-based motion tracking system. The L5/S1 joint moments obtained from the camera video were compared with those obtained from the motion tracking system. The comparison results indicate that estimated total peak L5/S1 moments during lifting tasks were positively correlated to the reference L5/S1 joint moment, and the percentage error is 7.7%.more » « less
An official website of the United States government

Full Text Available